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Abstract-In this paper we investigate the effect of thermal fields on the morphological stability in a 
directional solidification system with remote flow. We undertake a linear analysis and develop an asymptotic 
solution for large Schmidt number. The result shows that the system is more stable when the latent heat 
increases and/or the ratio of conductivity of solid to that of melt gets smaller. The lead/tin alloy is taken 
for a realistic example and the result shows that the freezing lead/tin system is more stable when the thermal 

effect is taken into consideration. Copyright 0 1996 Elsevier Science Ltd. 

lNTRODUClION 

In recent decades, solidification of dilute binary alloys 
has been studied extensively, because it is the main 
method by which electronic materials are produced. 
During the solidification process, the planar, solid- 
liquid interface may become unstable to a cellular 
structure [l-3], resulting in unwanted compositional 
inhomogeneities in the solidified material. This is 
known as the morphological instability. 

The first explanation of the morphological insta- 
bility was given by Tiller et al. [4] in terms of the 
mechanism of constitutional supercooling. Mullins 
and Sekerka [S] first adopted the infinite one-sided 
model by neglecting the solute diffusion in the solid 
to establish the linear theory. Wollkind and Segel [6] 
and Wollkind et al. [7] extended the theory to the 
weakly nonlinear regime. 

Fluid motion within the melt is known to have 
considerable influence on the stability of the system 
and has been the subject of reviews by Coriell and 
Sekerka [8] and Glicksman et al. [9]. The effect of 
model force flows, representing large scale fluid 
motions in the melt, on the morphological stability of 
the solid-liquid interface has been considered ana- 
lytically by Delves [lo, 1 l] for Blasius and quadratic 
flow profiles, and numerically by Coriell et al. [ 121 for 
a Couette flow. In both cases a linear stability analysis 
was employed which predicted some stabilization of 
the morphological instability for disturbances with 
wave vectors in the direction of fluid flow. Brattkus 
and Davis [ 131 conducted a weakly nonlinear analysis 
for a model flow representing the solidification of a 
rotating disk. They found that the flow over the inter- 
face induced by rotation promotes a long-wave insta- 
bility. Brattkus and Davis [14] and McFadden et al. 
[ 151 have considered the effect of a planar stagnation- 

point flow. In particular Brattkus and Davis [14] 
found a destabilization of the system for long-wave- 
length disturbances which are found to propagate in 
the opposite direction to the direction of the flow. 
McFadden et al. [15] conducted a numerical inves- 
tigation of this situation and predicted the flow to 
have a stabilizing effect on the morphological stability 
of the system. 

Forth and Wheeler [16] investigated the interaction 
of the morphological mode of instability of a planar 
interface with the hydrodynamic, shear mode of insta- 
bility due to the presence of a model boundary-layer 
flow adjacent to the interface. They adopted the 
asymptotic-suction-profile flow velocity, because it 
has the advantage that it is an exact solution of the 
Navier-Stokes equations which can avoid making the 
bound-layer approximation as was done by Delves 
[lo, 111. Forth and Wheeler [16] further used the 
frozen-temperature approximation, which decouples 
the temperature field from the solute field by assuming 
equal thermal conductivities in the solid and liquid 
phases, zero latent heat release at the interface, and 
the solute diffusivity is much less than heat diffusivity. 

However, one would expect that the frozen-tem- 
perature approximation will lose accuracy at higher 
pulling speeds because of the large amount of latent 
heat released. In this work, we would like to improve 
the accuracy of Forth and Wheeler’s results [16] by 
taking the thermal effect into consideration. The 
governing equations of the present problem to be con- 
sidered will be described, accompanied with suitable 
boundary conditions, in the next section. The basic 
solution to these equations is then obtained in this 
same section. As the basic solution is obtained, a linear 
stability analysis will be undertaken. Small per- 
turbations are added to the basic solution and the 
Orr-Sommerfeld equation of these perturbations is 
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NOMENCLATURE 

far-field concentration 
non-dimensional solute concentration 
wave speed 
differential operator (d/dz) 
solute diffusion coefficient 
non-dimensional concentration 
gradient at the interface 
non-dimensional temperature gradient 
of liquid 
non-dimensional temperature gradient 
of solid 
non-dimensional curvature of the 
interface 
latent heat per unit volume 
liquidus slope 
non-dimensional liquidus slope 
unit vector normal to the interface 
direction towards the fluid 
conductivity ratio, tis/k, 
diffusivity ratio. c+/r, 
non-dimensional pressure 
Prandtl number in liquid, z~/~~t 
Reynold number, UT_ / V: 
inverse Sekerka number, I /Sk 
Schmidt number, v/B 
Sekerka number, MGJG, 
non-dimensional time 

T, 

r, 

non-dimensional temperature in the 
liquid 
non-dimensional temperature in the 
solid 

u non-dimensional velocity 

UX far-field velocity 

T”, temperature at melting point 

T, interfacial temperature 

V,, growth speed 
.Y, I’, z non-dimensional spatial coordinate 
4 unit vector in the z-direction. 

Greek symbols 
B wavenumber in the x-direction 

21 thermal diffusivity of liquid 

Es thermal diffusivity of solid 

B wavenumber in the y-direction 
f wavenumber, ,,/m 

KI thermal conductivity of liquid 

K\ thermal conductivity of solid 
h- partition coefficient 

1’ non-dimensional capillarity parameter 
1’ kinematics viscosity of the fluid 

P density of the fluid. 

Superscript 
* dimensional quantity. 

obtained. We will solve the Orr-Sommerfeld equation 
after expanding all of the variable into a power series 
of the inverse Schmidt number and will obtain the 
asymptotic solution. Results so obtained will be com- 
pared with those obtained by Forth and Wheeler [16]. 
In the last section we will draw a brief conclusion. 

THE GOVERNING EQUATIONS 

In this work, we consider a dilute binary alloy freez- 
ing at a solid-liquid interface when a temperature 
gradient is present. The liquid phase is in motion with 
a non-zero component of velocity parallel to the solid- 
liquid interface. In both the theoretical and the prac- 
tical sense, the interface is rationally assumed to be 
planar at the first stage and to advance into the fluid 
with an average speed Vt. We locate our coordinate 
system in a frame of reference coincident with the 
average position of the interface, which is given by 
z* = 0. The fluid is assumed to be of semi-infinite 
extent and to occupy the region z* > 0. The free- 
stream velocity and solute concentrations are pre- 
scribed in the liquid phase far from the interface and 
can be considered to represent the behavior of large 
scale transport processes in a real crystal-growth melt. 

Figure 1 shows the physical configuration described 
above. 

We are concerned here with the interaction of the 
morphological instability of the interface under the 
effects of both the fluid flow and the fluctuation of the 
temperature gradient, and therefore neglect the effect 
of gravity. To neglect the convective effect of the melt, 
we assume there is no change of density of the alloy 
on solidification. For most semiconducting alloys the 
diffusion coefficient of solute in the solid is several 
orders of magnitude smaller than that of the liquid 
phase, hence we assume that the effect of diffusion in 
the solid phase is negligible. Further we assume that 
the liquid is incompressible and that the alloy is dilute. 

Under the above assumptions the Navier-Stokes 
equations and convectiondiffusion equation govern 
the transport of momentum, solute, and thermal heat, 
respectively. Hence, we have 

f?u* 
F +u**vu* = +p*+“vu* (1) , 
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Fig. 1. The physical configuration of a freezing alloy 

aTS* ,t,-vgJ=r,V2T$ (4) 

and the assumption of incompressible flow yields 

v*u* = 0 (5) 

where u*, p*, c* are the dimensional velocity, pressure 
and solute concentration, respectively, Tt and T$ are 
dimensional temperature in the liquid and the solid 
phases, respectively, CQ_ and a, represent the thermal 
diffusion coefficients in the liquid and solid phases, 
respectively, v and p are the kinematics viscosity and 
density of the fluid, B is the solute diffusion coefficient 
in the liquid phase, and Vg is the pulling rate of the 
growing alloy 

The boundary conditions at the solid-liquid inter- 
face, which we describe by z = h*(x*,y*, t*), are 

(U* + Vo*2) - ii = 0 (6) 

(u* + vgz) x ii = 0 (7) 

Dvc**ii =(k-l)C*(V@+l/b**. (8) 

T* = Tz +mC* + Tzp*K* (9) 

L*V;Z*fi =(-k,VT:+ksVT,*.ii (10) 

T,* = Tt = T: (11) 

Equation (6) describes the conservation of mass at 
the interface, where ii is the unit vector normal to the 
interface directed towards the fluid, L is the unit vector 
in the z*-direction. Equation (7) is the no-slip 
condition. Equation (8) expresses the conservation of 
solute across the interface, where k is known as the 
segregation coefficient and V,* is the velocity of the 
solid-liquid interface in our moving frame of refer- 
ence. Equation (9) describes the dependence of the 

freezing temperature of a binary alloy upon its com- 
position and also, in its last term, includes the capil- 
larity effects referred to as the Gibbs-Thompson 
effect. In equation (9), Tz is the freezing temperature 
of the pure substance, m the liquidus slope, p* is the 
capillarity constant, and K* is the curvature of the 
interface. Equation (10) is the conservation of energy 
across the interface, where L* denotes the latent heat, 
k, and k, are thermal conductive coefficients in the 
liquid and solid phase, respectively. The last boundary 
condition expresses the continuity of temperature 
across the interface, where T,* is the interfacial 
temperature. 

The far-field boundary conditions are 

u* -+(U*,,O, - VX) 

c*+cz 

(12) 

(13) 

i?T,* Vo* ---*Gtexp --z* 
az* ( > ML 

(14) 

dTS* Vt; __ --t G$exp - -z* 
az* ( > Es 

(15) 

as z* --* co. Here Gt and GB denote the temperature 
gradient in the liquid and solid phase at planar inter- 
face (z* = 0), respectively. 

Thus a steady-state solution to equations (l)-(S) 
with boundary conditions (6)-( 15) is 

@(z*) = U:[I--exp(T)] (16) 

C$(z*) = C’[l+ yexp(*j] (17) 

T&,(z*) = T;+mCh(O)+$G:[l+exp(~)l 

(18) 

T$(z*) = T~+mCl(O)+~G:[i-exp(~j] 

(19) 

Px(x*) = P,*. (20) 

We shall non-dimensionalize the problem by 
putting 

x* =(D/v;)x u* = VXU 

t* =(LY/V,*‘)t p* = pv,I;p 

P = T:T C* = CSC h* =(@V$)h(x,y,t) 

T:G, CC, 
C’=m G”=qp$ (21) 

in which the dimensional governing equations (l)-(5) 
are transformed into the non-dimensional ones 



3420 C.-C. HWANG et al. 

&A 
i?t+u’vu = -Vp+ScV% 

dC 
~+uw=v”c 

Pr aTs Pr dT, -_= 
SC dt SC Fz 

n,V’ Ts 

v*u=o 

(22) 
T&Z) = 1 +MC,(O) 

+(ndSc/Pr)Gs[l -exp(-Prz/n,Sc)] (43) 

(23) POW = PO (44) 

where 

(24) G, = C;,(O) = (k - 1)/k. (45) 

(25) LINEAR STABILITY ANALYSIS 

We proceed to the linear stability analysis of the 
(26) steady-state solutions by adding to them small per- 

turbations such as where Sc = v/B is the Schmidt number, Pr = v/scL is 
the Prandtl number and nd = cc&,. 

The corresponding nondimensional boundary con- 
ditions at the solid-liquid interface z = h(s. J’, t) are 

(u+f)*Ei = 0 (27) 

(u+2)xii=O (28) 
. A ,. 

VC.n=(k-l)C(z+V,,)*n (29) 

T== I+MC+PK (30) 

Li*ii =(-vr,,+n,V~s)*i? (31) 

and 

Ts = T, = T, (32) 

where 

M = mC*,,!Ts ,u = p’* VoiDI 

L = L*fi/k, T; n, = k, /k, (33) 

and K is the non-dimensional curvature of the inter- 
face. 

We define a Reynolds number Re by 

Re = U;/V;f (34) 

so the far-field boundary conditions are in the fol- 
lowing non-dimensional forms : 

u-+(&,0, -1) (35) 

c-+1 (36) 

CT,,/?: = GI exp( - PrzjSc) (37) 

c?T,l’& = G, exp( - Prz/ndSc). (38) 

The steady-state solutions (I 6)-(20) then become 

U(X, t) =(U,(z)+J(x, t),d(x, t), -1 +*(x, t)) 

(46) 

where 

C(x, t) = C,(z) + E(x, t) 

TL(x, 1) = TM(Z) + FL@, t) 

Ts(x, 0 = T,,(z) + Fs(x, t) 

P(X, t) = PO +m, t) 

It = K(.(.y,,v. t) 

- _ 

(47) 

(48) 

(49) 

(50) 

(51) 

(2. (‘. rz:, (‘, TL, T,,b)(x, t) 

=(a.~. E.?, F,, Ts,a)(z)exp [2(.x-c’t)+i&] (52) 

L(.x, ~3, t) = 6 exp [ioi(r- iY) + iljy] (53) 

4 and $’ are the wavenumbers in the x- and y-direc- 
tions, respectively, and L: is the wave speed. 

Now, linearizing the governing equations (22)-(26) 
and using the normal mode solutions (52)-(53) one 
can obtain 

[Sc(D2-~2)+D+i&(P-Uo(z))]~(z) 

= w(z)DU,,(z)+i@(z) (54) 

[Sc(D2 -F*) + D+iol(e- C~‘~(z))]v^(z) = i/$(z) 

(55) 

[Sc(D’-i’)+D+ic?(&U,,(z))]d(z) = Dp(z) 

(56) 

i%(z) +&(z) + Dw(z) = 0 (57) 

[(D’--F’)+ D+iB(d- U,,(z))]c(z) = #(z)C”(z) 

uo(x) =(U,(--),O, -1) (39) 

where [DZ-i2]TL(z) = -ioid(Pr/Sc)TL(z) 

U,(z) = Re[l -exp(-z/L%)] (40) -(Pr/Sc)[U,(~)ioiF~(z) 

and - DTL(z) + w(z)G, exp( - Prz/Sc)J 

C,(z) = l-G,exp(-z) (41) [D’-i’]Ts(z) = -i~Z(Pr/n,Sc)F~(z) 

TL,,(z) = 1 +MC,(0)+(Sc/Pr)GL[l -exp(-Prz/Sc)] - (Pr/ndSc)DTs(z) 

(42) where D is the differential operator d/dz 

(58) 

(59) 

(60) 

and 



Morphological stability 3421 

P = &?+p. Using equation (57) to eliminate per- 
turbed pressure p(z) yields 

~Sc(D2-r^*)*+[D+is(e-U,(z))](D2-i*) 

+ioiD21j0(z)}~(z) = 0. (61) 

The boundary conditions at the perturbed interface 
(27) and (28) may be transferred to z = 0 yielding 

IV(O) = 0 (62) 

n(0) = -Duo(o) 6 (63) 

and 

O(0) = 0. (64) 

Further equations (63) and (64) may be combined 
using equation (57) to give 

Dm(O) = ioiRe6/Sc (65) 

and equations (29)-(32) become 

(sG,(ioid-k)+DC(O)-(k- l)c(O) = 0 (66) 

(67) 

+ioiCL6 = 

+(-D~~(O)+n,D~s(O)) (68) 

GL6+TL(0) = G,S+?+s(O) (69) 

where Sk is the Sekerka number defined by 
Sk = MGJGL. 

The far-field boundary conditions then yield 

E(z), DE(z), C(z), TL(Z) --* 0 as z+ cc (70) 

Ts(z) + 0 asz+ --cc (71) 

For given wavenumbers t? and fi, Reynolds number 
Re and Sekerka number Sk, as well as the parameters, 
k, SC, ii, M, L, n,, Gs and CL, the equations (58)-(61) 
together with boundary conditions (62) and (65)-(70), 
define an eigenvalue problem for e. Let ei denote the 
imaginary part of c^, then the system is linearly stable 
if Bd, is negative for all wavenumbers ; otherwise it is 
unstable. 

STABILITY RESULTS SOLUTION FOR LARGE 
SCHMIDT NUMBER 

Since the complete analytical solution is difficult to 
deduce, and since almost all alloys possess a large 
Schmidt number, we prefer to obtain an asymptotic 
one for large Schmidt number. Thus, in this paper we 
require that SC --f co, Pr is O(l/Sc), L is O(1/Sc2), and 
Re is O(Sc’). We therefore put the functions K(Z), 
C(Z), FL(z) and Ts(z) into the asymptotic form 

m = f dJ”(4/sCn (72) 

where N is a positive integer. Now we introduce a 
new parameter, the inverse Sekerka number, which is 
defined by S = l/Sk. The parameters e, S G,_ and G, 
are also put into asymptotic form 

(73) 

Then the governing equations (58)-(61) together 
with boundary conditions (62) and (65)-(70), are 
solved successively at each order of the small par- 
ameter ~/SC. 

At each order, m.,(z), ~Jz), TLLn(z) and T&z) are 
solved simultaneously and consequently one will 
obtain a dispersion relation, which describes the 
relation among the wave speed I& and other control 
and material parameters. To study the curve of mar- 
ginal stability, one simply lets the imaginary part of 
6, be equal to zero and then have a relation, say, 
among S, and other control and material parameters. 
In the present study, we continue the calculating pro- 
cedure and stop at 0( ~/SC’). So we have 

s = so + s, /SC + s2/sc2 (74) 

where So, S, and S, satisfy the following relations : 

=,-L&4’_& 
MC, 1 +n, k-,+R (75) 

c 

and 

S, = ioi{t,H(k, F) - ReU(k, f)} (76) 

(k-,+R,[l-&(l-#S2 

=j’Re’{-$(2i+l)+,] 

>I 

+(R--i-$(2i+l)+L] 

X 
(2i+ 1) + H(k, ?) -~ - 

i3 i* 11 n=O 
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In equations (75)-(77), R, H(k, i) and iJ(k, i) are, 
respectively, expressed as 

R =(i’+;)‘,? (78) 

W, 4 = & k 
l- 

2R(k-f+ R) 1 (79) 
? 

and 

Wk 3 = & (k+?)(2i+ 1) 

? P 

1 k 1 (2i+ 1) 

f 4R’(k-;+R) 
-~ (80) f’ 

In equation (76), since on the marginal curve ?, is 
real, as are S,, 8, Re, H(k,v^) and iJ(k,i). hence we 
must have 

and 

d , = ReU(k, ?)/H(k, i). (82) 

It is known that a positive (negative) E, represents 
a forward (backward)-traveling wave. Also we should 
keep in mind that, as L = 0 and n, = 1, the present 
result will reduce to that Forth and Wheeler [ 161 have 
obtained. 

In the following calculations, Re = I is applied to 
perform the effect of the far-field fluid flow. As seen 
in equation (77), IS,] will be maximum when & E i. 
i.e. for modes parallel to the flow direction, so the 
calculations are undertaken under such consideration. 
Figure 2 shows the curves of marginal stability in the 
(i,s) plane. In this figure, the effect of the latent heat 
on the morphological stability is shown. We see that 
as n, is fixed, the freezing system is more stable as 
latent heat gets larger. The effect of the conductivity 
ratio, it,, on the morphological stability is shown in 
Fig. 3. We see, in this figure, that the freezing system 
is more stable as the conductivity ratio gets smaller. 

The overall thermal effect on the morphological 
stability is obviously the combination of the effects of 
the latent heat and of the conductivity ratio. We now 
take a lead/tin alloy as a realistic example for calcu- 
lation. The realistic L/MC, and n, for lead/tin alloy are 
0.8884 and 1.868, respectively. In Forth and Wheeler’s 
study [16], they neglected the latent heat and assume 
the conductivity ratio is unity. The result is shown in 

1.1 - - - L/yG.=O 
- ---- L/MG.=O.SGO6 

-------- L/HG.=O."f _ c _ \ 
\ 

0.B _I / / , 
\ 

Stable ,I’ ,;----.\\ ‘\, 
/ I/ \ \ ’ 

Fig. 2. Marginal stability curves with different value of 
L/MG, in (i, s) plane; n, = 1 .O 

cn 

1.1 

0.5 

IO 

Fig. 3. Marginal stability curves with different value of n, in 
(i, S’) plane ; LIMG, = 0.8884. 

Fig. 4. We can easily see that the realistic system of 
lead/tin alloy is more stable when the totally thermal 
effect is taken into consideration. 

CONCLUSION 

In this work, we improve Forth and Wheeler’s work 
[16] by taking the thermal effect into consideration. 
The linear result is obtained in an asymptotic form 
for large Schmidt number. The result shows that the 
system is more stable when the latent heat increases 
and/or the ratio of conductivity of solid to that of 
melt gets smaller. The lead/tin alloy is taken for a 
realistic consideration. The result shows that, when 
compared to Forth and Wheeler’s, this realistic system 
is more stable when the thermal effects are taken into 
consideration. 
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Fig. 4. Curves of marginal stability for a lead/tin alloy. The 
solid line represents the present analysis n, = 1.868, 
L/MG, = 0.8884); and the dashed one is from Forth and 

Wheeler [16] (n, = 1.0, L/MG, = 0). 
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